AFRL-IF-RS-TR-2005-119

Final Technical Report
April 2005

INTRUSION TOLERANCE BY UNPREDICTABLE
ADAPTATION (ITUA)

BBNT Solutions, LLC

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K446

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

Copyright ©2004 by BBNT Solutions, LLC.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

STINFO FINAL REPORT

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2005-119 has been reviewed and is approved for publication

APPROVED: Is/

PATRICK M. HURLEY
Project Engineer

FOR THE DIRECTOR: Is/

WARREN H. DEBANY, JR., Technical Advisor
Information Grid Division
Information Directorate

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,

and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE
APRIL 2005

3. REPORT TYPE AND DATES COVERED

Final Jul 00 — Jan 04

4. TITLE AND SUBTITLE
INTRUSION TOLERANCE BY UNPREDICTABLE ADAPTATION (ITUA)

6. AUTHOR(S)

Partha Pal, Michael Atighetchi, Chris Jones,

Idit Keidar, David Levin, Joseph Loyall,

Paul Rubel, Richard Schantz, Ronald Watro and Franklin Webber

5. FUNDING NUMBERS
C -F30602-00-C-0172

PE -63760E
PR -K446
TA - 15
WU - Al

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
BBNT Solutions LLC

10 Moulton Street

Cambridge Massachusetts 02138

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFGA

3701 North Fairfax Drive 525 Brooks Road

Arlington Virginia 22203-1714 Rome New York 13441-4505

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2005-119

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Patrick M. Hurley/IFGA/(315) 330-3624/ Patrick.Hurley@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The ITUA project began with the research goals of using Byzantine fault-tolerant protocols to coordinate adaptation to
attacks and exploring the use of unpredictability in adaptive responses to confuse and delay the attacker. These main
factors distinguish the ITUA approach; 1) dynamic adaptation - intrusions cause charges in the system, and a survivable
system must cope with these changes, 2) a defense-enabled application that has an application and mission specific
defense strategy, and 3) defense enabling builds the defense in middleware, intermediate between the application and
the networks and operating systems on which the applications run. The ITUA approach was to respond and adapt to the
effects of a malicious attack while it is in progress. If the defense-enabled application continues correct processing in
spite of the attached, the defense was considered to be successful. The report reviews the motivation for the project
and its historical context, then summarizes the ITUA research goals, progress toward achieving those goals, and
lessons learned from the research. The report offers some plans for future research and draws a conclusion.

14. SUBJECT TERMS

15. NUMBER OF PAGES

Intrusion Tolerance by Unpredictable Adaption, Defense-Enabled Applications, Adaptive 44

Defenses in Middleware, Dynamic Adaption, Unpredictability in Adaptive Responses

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Contents

1 Identification

2 Project Motivation
3 Historical Context
4 Project Goals

5 Research Progress and Issues
5.1 Architecture L
5.2 Attacker Modelo oo
5.3 Global Coordination
5.4 Rapid Local Response
5.5 Byzantine Group Communication
5.6 Unpredictability oo
5.7 Technology Transition
5.8 Implementation Lo

5.9 Validationo

6 ITUA Deliverables and Outreach
6.1 Technology Demonstrations
6.2 Project Software Lo
6.3 Published Papers oL
6.4 Theses L
6.5 Other ITUA Presentations

6.6 Project Documents

7 Plans for Further Research
7.1 Integrated Survivability Solutions
7.2 Continued Exploration of Survivability Technologies

7.3 Better Software Engineering of Survivable Systems

8 Conclusion

List of Figures

Figure 1: ITUA ArChiteCUIe.o et a e e 8

i

goodelle
Text Box
 List of Figures

 Figure 1: ITUA Architecture...8

1 Identification

The Intrusion Tolerance by Unpredictable Adaptation (ITUA) project was a joint
effort by BBN Technologies, the University of Illinois, the University of Maryland,
and the Boeing Company. The work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL)
under contract F30602-00-C-0172 beginning in July 2000.

This document is the Final Report for ITUA. It reviews the motivation for
the project and its historical context, then summarizes the ITUA research goals,
progress toward achieving those goals, and lessons learned from the research. When
research results are mentioned, the reader is directed to other documents that
provide more detail. A list is given of specific achievements and documents created
by the ITUA project. Finally, the Report offers some plans for future research and
draws a conclusion.

This document is delivered in fulfillment of CDRL A003 and in partial fulfill-
ment of CDRL A011 of the contract.

2 Project Motivation

Malicious attacks against computer systems are becoming more common and more
damaging. A malicious attack against computer system X is a sequence of aunau-
thorized actions taken by a user (or a group of users) of some computer system
Y to alter or deny data processing in X. If X and Y are the same, the user is
called an insider (i.e., he is authorized to use X but not to attack it); if they
are different, he is called an outsider (e.g., he attacks X over the Internet from
Y'). Malicious attacks are becoming more common because computers are becom-
ing more interconnected. Malicious attacks are becoming more damaging because
computers are increasingly relied on to provide essential data and services, so unau-
thorized changes to these data and services are more harmful and noticeable, and
less tolerable.

A secure computer system protects against malicious attacks by making such
attacks very difficult or impossible to carry out. Unfortunately, building a com-
pletely secure computer system is now known to be exceedingly difficult, an ideal
that is very costly during both development and maintenance, and that involves
significant burdens for users. Practical alternatives are needed.

The goal of the ITUA project was to give software applications an increased
resistance against malicious attack even when they run in an environment that

is not completely secured. We call any such application “defense-enabled”. Note
that defense enabling is less ambitious than building a secure system: rather than
protect the entire system, defense enabling concentrates on the survival and in-
tegrity of essential applications, possibly sacrificing other parts of the system to
the attacker. Defense enabling also gives priority to some security properties over
others: we are much more concerned with defending the availability and integrity
of an application’s services and data than their confidentiality. Note that this pri-
ority is implicit in our definition of “malicious attack”, which does not mention
the possibility that the attacker might steal confidential data. Also note from the
definition that defense enabling is resistance to unauthorized actions by insiders
and/or outsiders. An attack by an insider who takes only authorized actions' is
beyond the scope of the project.

The ITUA approach was, in brief, to respond and adapt to the effects of a
malicious attack while it is in progress. If the defense-enabled application continues
correct processing in spite of the attack, we consider the defense to be successful.
Even if the attacker eventually is able to damage the application, the defense will
have been successful if it allowed time for system administrators to detect the
attack and respond to it, perhaps by physically blocking the attacker’s continued
access to the system. Any technique for extending an application’s life while under
malicious attack is potentially part of defense enabling.

3 Historical Context

Defense enabling is representative of a relatively recent trend in computer security,
often called survivability or 3rd generation security. The 3 generations can be
summarized as follows:

1. 1st generation security aimed to protect systems completely with software
and hardware mechanisms that could not be circumvented [19]. This ap-
proach has proved to be quite costly and inflexible.

2. 2nd generation security acknowledged that implementations of 1st generation
protection are imperfect, allowing attackers to circumvent security mecha-
nisms. The 2nd generation aimed to detect attacks, allowing system opera-
tors to respond [8].

3. 3rd generation security uses both 1st and 2nd generation techniques but adds
automated defenses that respond to an attack. These defenses can respond

IThis is sometimes called an “insider attack”.

to the effect of attacks even when the attacks themselves are not detected
with 2nd generation techniques.

The 3rd generation has proved to be necessary in modern computer systems, which
typically rely on “commercial off-the-shelf” (COTS) components whose security
characteristics are not known and that interconnect and interoperate with many
other systems. The use of insecure COTS means that the 1st generation approach
is impossible. The openness of these systems results in the constant discovery
and use of new attacks. When 2nd generation techniques fail to detect these new
attacks, 3rd generation techniques are necessary [2].

Several factors distinguish the ITUA approach to survivability from others.
First, dynamic adaptation is a key theme of our approach. Intrusions cause changes
in the system, and a survivable system must cope with these changes. As a con-
sequence, defense-enabled applications must be very agile and will make use of
the flexibility possible in today’s dynamic, networked environments. Second, a
defense-enabled application has a defense strategy that is typically application-
and mission-specific. Such strategies complement and go beyond traditional ap-
proaches to security in which protection mechanisms are typically not aware of the
applications they aim to protect. Third, defense enabling builds the defense in
middleware, intermediate between the application and the networks and operating
systems on which the application runs. Recent developments in middleware allow
us to develop adaptive defenses quickly [15, 10, 6]. Advanced middleware allows
us to base these defenses on information from layers both above and below, i.e.,
from the application and from the infrastructure, as well as allowing us to con-
trol and dynamically adjust aspects of each layer. Defense strategies implemented
in middleware can be reused relatively easily in the context of other applications
because they are only loosely coupled to the application.

With ITUA, we also extended our own previous work on defense enabling. The
APOD project (“Applications that Participate in their Own Defense”) had similar,
but more limited, goals. By subjecting a defense-enabled application to an attack
by a Red Team, we were able to show during APOD that dynamic adaptation could
slow the progress of even a sophisticated attacker [12]. ITUA improved upon that
work in several ways, as discussed in the next section.

Near the end of the ITUA project, we began the OASIS Dem/Val project in
which we applied some of the ITUA ideas to the defense of an experimental military
system. That system, a Joint Battlespace Infosphere (JBI) [18], is intended for
command and control and would be an attractive target for attack. As of this
writing, our work to create a defense-enabled JBI, named “DPASA”, is still in
progress. The design and validation of DPASA, although incomplete, has already
influenced some of the conclusions we will draw about ITUA in this document.

4 Project Goals

The ITUA project began with the following research goals:

e Use Byzantine fault-tolerant protocols to coordinate adaptation to attacks.

e Explore the use of unpredictability in adaptive responses to confuse and delay
the attacker.

Byzantine fault-tolerant protocols were originally invented, two decades ago, for
use in ultra-reliable avionics [20]. Byzantine fault tolerance depends on redundancy
to isolate and hide the effects of (i.e., “mask”) failures that cause some components
to behave in arbitrarily bad ways.

Malicious attack could cause such arbitrarily bad behavior, and so the idea
of using Byzantine fault tolerance to mask the effects of attacks was widely rec-
ognized. Arbitrarily bad behavior could be caused, for example, if an attacker
defeats the protection mechanisms on a host H to gain privileges on H, then uses
that privilege to corrupt an application component running on H. With enough
redundant components on other hosts, a Byzantine fault-tolerant protocol could
mask bad decisions by the corrupt component on H, and other components might
even agree to ignore H altogether.

Byzantine fault tolerance has not been widely used in distributed systems,
mainly because it is expensive. Protocols to tolerate arbitrarily malicious behavior
need more redundancy and are slower than protocols that tolerate only “crashes”.
Our own APOD work explicitly avoided using Byzantine fault tolerance, with the
rationale that few attackers have both the skill and motivation to create malicious
behavior beyond crashes, and so merely tolerating crashes would raise the bar
against most attacks.

Whether Byzantine corruption is common or not, however, the threat is real.
Many published vulnerabilities in operating systems (e.g., see [3]) allow remote
attackers to execute arbitrary code with administrator privilege. Some attackers
will exploit these vulnerabilities, then execute code custom-built to attack the
target application. This kind of attack is especially likely if the attacker’s goal is
to damage the application’s integrity rather than to deny service. It is this kind of
attack that ITUA was designed to counter (as well as less sophisticated attacks!).

Our work to make Byzantine fault tolerance useful for defense enabling was
quite successful and is summarized in Section 5.5.

Most attacks, especially those launched by an outsider, will follow a plan that
reflects the attacker’s knowledge of potential vulnerabilities. In its simplest form,

4

the plan for a corruption-inducing attack is:

1. find a vulnerable host that can be commandeered remotely to give the at-
tacker administrative privilege;

2. execute preplanned attack code to corrupt the application running on that
host.

Either of these steps can involve multiple actions, and some of the actions may be
scripted (i.e. run in an automated manner). A more complicated plan will take the
form of an attack tree, in which the branches represent alternatives the attacker
will try depending on how the defense reacts.

It is our thesis that unpredictability, in the form of reactive indeterminacy or
proactive changes in the system, can be used to the advantage of the defense.
Proactive changes in the system may quickly make the attacker’s plan obsolete.
Reactive indeterminacy may break the attacker’s scripts, complicate the attack
plan or scare the attacker off. At the very least, reactive indeterminacy forces the
attacker to consider more possibilities at branches in the attack tree, any of which
might arise in a particular attack run. Even if there is only a small number of such
possibilities, the uncertainty about which outcome the attacker will face makes the
plan and its scripting more complicated, effectively slowing down the attack.

In ITUA, we used unpredictability as a technique to enhance the effectiveness of
our adaptive responses. We built middleware support for adding randomness to an
application’s adaptive behavior, to the low-level rapid response mechanisms and to
the management of redundant resources. We also started to evaluate and quantify
the impact of unpredictability. These issues are summarized in Section 5.6.

ITUA was the first project to explore systematic use of unpredictability in con-
junction with adaption. Other 3rd generation security and survivability projects
have now also adopted unpredictability to augment their defensive capability. Be-
low are some examples:

e Countering Traffic Analysis in IPSec

— Work in this project aims to use unpredictability to hinder information
gathering by traffic analysis. For instance, even on an encrypted chan-
nel, the last hop normally reveals the the endpoint, which along with
other observations such as volume, time of day, current world events
(war or worm attack) could yield potentially valuable information for
the attacker. By generating additional and random hops after the real
recipient, traffic analysis becomes harder.

e Distributed Authentication for Mobile Internet

— This project used the uncertainty prevalent in a mobile Internet to de-
velop a distributed authentication mechanism. In this context, N differ-
ent packets from source A to source B may be forwarded in N different
ways, because source and/or destination can be mobile. Distributed au-
thentication will mean that these N packets may be encrypted (signed)
in NV different ways as well. A distributed authentication mechanism is
claimed to be more resilient than its less dynamic and more centralized
alternatives.

e Probabilistic Routing/Adaptive Multipath Routing

— Multiple projects are exploring a set of new protocols that address the
vulnerabilities of static routing (that the path from source A to destina-
tion B is fairly static and predictable), and tolerate accidental and ma-
licious failures in control (routing) and data (transport). Anonymizers,
overlays, dynamic selection of routes are examples where uncertainty
and dynamism are used for protection and tolerance.

The ITUA project also concentrated on several subordinate goals, necessary to
evaluate our research on defense enabling:

e Create an architecture for managing defensive adaptation. (See Section 5.1
for a list of architectural issues.)

e Define policies for coordinated, global, adaptation. (See Section 5.3 for a list
of global adaptation issues.)

e Define policies for rapid, local, response to attacks. (See Section 5.4 for a
list of local response issues.)

e Implement a prototype. (See Section 5.8 for lessons learned during imple-
mentation.)

e Demonstrate technology transfer feasibility by defense-enabling an applica-
tion of military interest. (See Section 5.7 for a discussion of how ITUA was
applied to IEIST, a system developed by our team member, Boeing.)

Throughout the project, we used mathematical models to understand and val-
idate the effectiveness of ITUA defenses. Validation became such an essential part
of the project that DARPA awarded us several extensions to explore validation
techniques:

e In early 2002, we were tasked to apply probabilistic validation techniques
to ITUA’s intrusion tolerance. The results from this task are reported in
detail in a separate project document, “Validating Intrusion Tolerance Us-
ing Mathematical Models”, hereafter referred to simply as the “Validation
Report”.

e In late 2002, we were tasked to devise techniques to measure and quantify
assurance of large, distributed information systems and to develop a 5- to
10-year research roadmap. We presented our research roadmap in this area
at a workshop in Oglebay. Under this award, we also executed performance
and adversarial testing of ITUA technologies.

Our validation results are intertwined with progress toward the other goals and will
be discussed throughout the next section. In particular, though, see Section 5.2 for
assumptions we made about potential attackers and see Section 5.9 for a discussion
of issues that arose during the validation process itself.

In March 2002, the ITUA team was invited by DARPA to join 5 other OASIS
performers to participate in an workshop about integrating OASIS technologies
into the design of a survivable server. The workshop considered several military
server applications and selected a security management service from Army CE-
COM. This choice was the beginning of the SAMS project, in which technologies
from ITUA (BBN and UI), HACQIT (Teknowldege), KARMA (Draper), ITSI
(SCC), JBET (NAI) and VPNShield (ATC) were integrated to defend CECOM’s
application at various layers of its tactical network. This project was fast-paced,
risky and highly visible, and demonstrated that OASIS research could be usefully
integrated into a real military application that came with its own requirements,
including constraints on the size of, and space allocated for, hardware. The SAMS

project team developed a prototype, which was demonstrated both in the devel-
opment lab and at CECOM.

5 Research Progress and Issues

This section lists the main research questions that we addressed during the ITUA
project. For each question, we summarize our answer, and if necessary, direct the
reader to other documents that provide more detail.

5.1 Architecture

The ITUA architecture organizes the defense of an application into several layers:

7

Security | Replication

Magr Application

Actuator

GCS GCS

[E o] B [w]] []|

i Group Group i

I
I
|
1 Benlication:) 11| Connectiors
I
I
I
I

|
I
|
|
T
I
|
|
\

Host 1 Host 2 Host 3 Host 4

Security Domain Security Domain

Figure 1: ITUA Architecture

e Application Components: Critical application components are replicated,
and each group of replicas is coordinated using a Byzantine fault-tolerant pro-
tocol. The coordination implements the well-known State Machine Approach
for providing fault-tolerant services [17].

e Network Hosts: The defense of each network host is controlled by an ITUA
manager on that host. A defense strategy for the whole network results from
coordinating the set of all ITUA managers on all hosts using a Byzantine
fault-tolerant protocol to reach consensus [1]. The set of managers will de-
cide, for example, when and where to create new application component
replicas.

e Security Domains: Each host resides in a unique security domain. The
boundaries between security domains are designed to be relatively hard for
an attacker to cross. Different domains use different platforms and different
platform configurations so that an attack that works in one domain is likely to
fail in another. Firewalls constrain the traffic that can pass between domains.
Application component replicas are placed in different domains so that an
attacker must cross domain boundaries to corrupt more than one replica in
any group.

A pictorial summary of the ITUA architecture can be seen in Figure 1, in
which a defense-enabled client-server application is distributed over two security
domains. The figure shows the client, marked by C, unreplicated (perhaps because
it is a user interface), running on Host 4 in the right-hand security domain. The
server has two replicas, each marked by R, running on Hosts 2 and 3, one in each
domain. Each host runs a manager, marked by M. The bubbles at the top of the
figure show some structure within each process. An application process interacts
with replication groups via a Gateway, which uses a Group Communication Sys-
tem (GCS). A manager comprises a security manager component, which monitors
sensors and controls actuators on the host, and a replication manager component,
which controls the structure of replication groups. Both manager components use
the GCS via the Gateway to coordinate with the other managers. More detail on
the ITUA architecture can be found in [13].

The key architectural questions we addressed in the ITUA project are the
following:

e Should managers be replicas?

Coordinating the defense is made simpler if the managers agree on some de-
cisions. For example, if processes in one domain behave badly, the defense
could declare that domain to be “bad” and quarantine it. If managers do
not agree, however, on which domains are bad, the defense may effectively
partition the network into enclaves, each accepted by only a fraction of the
managers. The easiest way to avoid this problem is for all non-corrupt man-
agers to agree on which domains should be quarantined. Other management
decisions similarly depend on agreement.

The non-corrupt managers would agree, by design, if all managers were repli-
cas and maintained the same state. The ITUA design replicates critical ap-
plication processes, so the managers could be replicated in the same way.
However, we decided against using replicated managers for two reasons:

1. Managers that are not replicated can act autonomously and this fact
adds flexibility, decentralization, and security to the design. In fact,
the ITUA managers do not need to agree on every decision but only
on some, so they do not need to share and agree on their entire state,
only on parts of it. For example, the manager on host H will maintain
data about intrusion detection alerts on H and may take local actions
as a result. This local data does not need to be replicated at other
managers.

The more management data can be kept local, the more secure the de-
sign. Data that is replicated at every manager may be revealed to an

attacker once even a single manager becomes corrupt. Local data, in
contrast, will be compromised only when the local manager is success-
fully attacked.

2. Agreement protocols are expensive and so should be used sparingly, es-
pecially in a large system. The set of ITUA managers is likely to be
large, and agreement protocols tend to grow much more expensive when
used by large groups. Not only are distributed systems getting larger
as networking costs fall, but we believe some ITUA defenses will work
better in a large network. For example, a large, heterogeneous network
gives the defense more options for moving an application’s computa-
tion away from corrupt security domains. Therefore, the cost of using
agreement among managers should be minimized by using agreement
protocols only when necessary rather than to maintain replication.

For these two reasons, we decided that managers should operate autonomously
for most decisions and demand agreement only for decisions in which it is
essential.

Should managers form a hierarchy?

Arranging the ITUA managers into a hierarchy is one way in which the
costs of agreement could be reduced. For example, suppose the root of the
manager hierarchy consisted of 4 managers, running a Byzantine agreement
protocol to tolerate a single corrupt manager. Decisions made at the root
would be passed along to subordinate managers at the branches and leaves.
The cost of agreement in this hierarchy would be only the cost for a group
of size 4.

Unfortunately, a hierarchy has the big disadvantage that its root is a far
more valuable target for attack than any leaf. In the example, corrupting
only two root managers would lead to unmaskable effects and to corruption
of the entire defense. Even if the root nodes were changed unpredictably
from time to time this weakness would still exist.

On the other hand, the ITUA design groups hosts (and their managers) into
security domains and this grouping suggests a shallow, two-layered hierarchy.
Because attacks within a security domain are likely to be easier than attacks
between domains, corruption of one manager within a domain may lead
relatively quickly to corruption of all other managers in that domain. The
security domains suggest a hierarchy in which some managers in domain D
are subordinate to other, primary, managers in). Subordinate managers
can be the leaves of the hierarchy while the primary managers form the root.

10

For these reasons, we decided that managers should form a hierarchy with at
most two layers. The root layer would consist of at least one manager from
every domain. The leaf layer would consist of all other managers. Putting
more managers in the root layer would add redundancy and make the defense
more robust, while increasing the cost of agreement among the managers.

Should security domains contain many hosts or few?

In the Validation Report, Chapter 3, Sections 4.1 and 4.2, we studied how
varying the numbers of domains and hosts will affect survivability (as defined
in terms of the application’s reliability and availability). The results were:

— If the number of hosts is fixed, survivability increases with more do-
mains.

— If the number of domains is fixed, survivability is largely unaffected by
increasing the number of hosts.

Both results depend ultimately on the assumption that attacking within a
domain is relatively easy, so adding hosts to a domain doesn’t add much
“space” for the application to run replicas. We concluded that a good design
for survivability will have as many domains as possible and relatively few
hosts per domain.

Increasing the number of domains in a design, however, is relatively expensive
(compared to the cost of adding hosts). A new security domain gains much
of its resistance to attack by its uniqueness: different platforms, different
configurations of the same platform, and local administration of platforms
and configurations. Each of these factors costs money. For example, our
DPASA design has only 4 security domains, the minimum number needed
to tolerate Byzantine corruption of a single domain. Yet finding 4 different
platforms that will run all the software we need has been difficult.

So the trade-off is: use more domains for survivability; use fewer domains to
cut costs.

Can managers change the set of security domains dynamically?

Security domains can be added or removed by system administrators when
the system is initially configured. But the ITUA managers themselves could
decide to add or remove domains at runtime, just as they decide whether to
add or remove replicas of application components. Does the ITUA architec-
ture support this?

We decided that the managers will be able to remove a security domain by
quarantining it, cutting off all interaction between that domain and the rest

11

of the system, but that new security domains will be added only by human
intervention. Consider the difficulties of adding a new domain at runtime.
First, no manager in the system has any reason to trust a new domain D
unless it has some prior awareness of D, i.e., D was, in effect, already part of
the system. Second, a manager is ITUA’s “presence” in a domain, allowing
ITUA to start other processes in that domain securely. To start a trustworthy
manager in D would require a trustworthy meta-manager in D, which a new
domain also lacks. For these reasons, the only way to add a new domain in
ITUA is by human fiat.

5.2 Attacker Model

In order to decide how to use the ITUA architecture for defense, we needed to
decide what kind of attacks ITUA would defend against. This decision required us
to make assumptions about the attacker: what he can do, and what he is unlikely
to be able to do. These assumptions, once they are expressed clearly, can be judged
for their reasonableness by comparing with actual attacks on distributed systems.

We assumed that an attacker would proceed by collecting privileges. In each
security domain, the attacker would exploit some vulnerability to gain privilege on
some host in that domain. Using that privilege, he would aim to exploit other vul-
nerabilities, either to increase his privilege on the same host or to attack another.

For example, the first step would be to attack a host H remotely, exploiting
a flaw in some network application to gain the privilege used by that application,
perhaps of some user U of H. The next step might be to attack host H again,
this time acting locally as user U, exploiting a flaw in some operating system
component to gain privileges used by the operating system. On most hosts, the
attacker would then have enough privilege on H to kill or corrupt any process
running on H. The attacker could then proceed to attack other hosts and other
domains.

We assumed that an attacker might be prepared to corrupt some processes
to cause them to behave in arbitrarily malicious ways. Typically, a significant
engineering effort is required to corrupt a process so that its behavior will have
malicious effects. Most likely, then, an attacker will automate this part of the
attack off-line so that it can be applied quickly on-line.

In what way is the attacker limited? If the attacker can concurrently attack
many domains, gaining privilege in each, corrupting application processes in each,
even a Byzantine fault-tolerant group will soon fail. Perhaps successful attacks
will be detected in some domains and those domains will be quarantined. But

12

intrusion detection is far from perfect; we did not expect our defense to rely solely
on it.

We assumed that the attacker cannot gain privileges in many domains at once.
With this assumption, even if the attacker attacks many domains concurrently,
those attacks will succeed at different times, leading to corruption of the system
in stages. We called this the staged attack assumption. Given this assumption,
and even with imperfect intrusion detection, the defense may have time to react
to an attack, delaying the attacker’s eventual success or possibly quarantining the
attack completely.

The staged attack assumption is plausible if security domains differ. As ex-
plained in Section 5.1, if domains are configured differently, an attack that works
against one may not work against another. Then the attacker must spend time
trying to find an attack that will work, and we expect that this trial and error
process will take different amounts of time for different domains.

The Validation Report contains several models of the interaction between the
attacker we have just described and the ITUA defenses. These models differ in the
details, but they all have the same basic outline. The models also have parameters
to describe the attacker: how fast do attacks proceed? how good is intrusion detec-
tion? and so on. Whereas this section has described the model of the attacker in
rough terms, the models in the Validation Report are much more precise, allowing
mathematical analysis.

We summarize here a few issues we faced in developing the models in the
Validation Report. Section 5.9 continues the discussion of models with some issues
that arose during their analysis.

e Should defenses focus on the worst case or on typical attacks?

We would like the ITUA defenses to be effective in both cases. At one
extreme, we want strong resistance to “ankle biters” who seek to probe the
defenses but have done little preparation. At the other extreme, we also
want to “raise the bar” against well-prepared attackers, even if their most
sophisticated attacks will eventually overwhelm our defenses.

Some of our defense mechanisms, such as Byzantine fault-tolerant groups,
work in both cases. Mechanisms that block or quarantine domains or hosts,
however, typically force a trade-off between the extremes. If a naive attacker
can probe our defenses, causing us to block or quarantine, a sophisticated
attacker will probably avoid such probing and instead try to spoof the de-
fenses to cause blocking or quarantine of the wrong domain, thus denying
service.

13

When we have been forced to choose, we tended to design ITUA for the
worst-case attacks.

In the Validation Report, Chapters 2, 4, and 5, our analysis focused on the
worst case, in which the attacker infiltrates domains as quickly as possible,
corrupting processes instantaneously and creating as much damage as pos-
sible. In the Validation Report, Chapter 3, we modeled the attacker more
generally, allowing an analysis of a more typical case. In that model, infiltra-
tion and corruption spread through the system at rates that are constant per
unit time. In that model, the attacker’s progress toward gaining privilege is
partly governed by chance rather than always taking the shortest time.

e Is diversity necessary to cause staged attacks?

If the attacker is unprepared, diversity is not necessary. The unprepared
attacker may spend significant time exploring the system using trial and
error, thus collecting system privileges in stages.

In the worst case, however, the attacker will be prepared. If the security
domains are homogeneous and if any domain can be attacked from any other,
the attacker will apply the same attack to every domain, killing the system.

One possible way to force staged attacks would be to restrict network com-
munication so that not all pairs of domains can talk to each other. Then
an attacker in one domain could not arbitrarily attack any other. Although
this approach might work, it is highly undesirable because it works against
network transparency.

We know of no good mechanism other than diversity for enforcing the staged
attack assumption.

e Should flooding attacks be considered?

Flooding attacks are a significant problem. In the ITUA project, however,
we treated them as out-of-scope. Therefore, the models in the Validation
Report assume that the attacker does not use flooding.

5.3 Global Coordination

The effectiveness of defense in the ITUA architecture depends on coordination
between the ITUA managers. In Section 5.1, we described how the managers will
coordinate. In this section we describe what the managers should coordinate to
do. We list the kinds of decision that must be coordinated and discuss how best
to make those decisions. In other words, ITUA and systems like it need a policy

14

for coordinating their defense. We have found, not surprisingly, that some policies
are better than others.

ITUA managers must coordinate two kinds of decision:

1. when and how to reconfigure groups of replicas;

2. when to quarantine security domains.
We addressed the following key questions for coordination policy:

e What is the best size for a replica group?

The larger the group, the more Byzantine corruption it can tolerate. Byzan-
tine fault-tolerant protocols of the kind we use in every replication group
will tolerate Byzantine corruption of any number of replicas less than a third
of the group size. So a group with 4 replicas will tolerate corruption in
one replica, a group with 7 replicas will tolerate corruption in at most two
replicas, and so on. Clearly, larger groups provide better tolerance.

On the other hand, larger groups have costs. The first cost is of the resources
needed to run the replicas. To make it hard for the attacker to corrupt
many replicas at once, we run each replica in a different security domain.
Therefore larger groups need more security domains and, as already noted in
Section 5.1, creating each new security domain is relatively expensive. The
second cost is the overhead of the Byzantine fault-tolerant protocol needed
to coordinate the replicas. This cost also grows larger for larger groups.

In the Validation Report, Chapter 2, we suppose that number of security
domains is unbounded and concentrate on the trade-off between tolerance
and overhead. To optimize this trade-off, we define a measure of goodness,
called “useful life”, that tells how much computation the defense-enabled
application can expect to get before the worst-case attack overwhelms the
defense. Forcing the attacker to corrupt more domains will tend to increase
useful life but the overhead will tend to decrease it. We make some reasonable
assumptions about the overhead, in particular, that it scales quadratically
with the group size, then we show mathematically that:

— Tolerating 1 corrupt replica, i.e., a group size of 4, gives more useful life
than not tolerating corruption at all, i.e., a group size of 1.

— Larger groups reduce the useful life. In other words, the increased
overhead of the larger group is more expensive than the increased time
the larger group can expect to survive.

15

We conclude that the ideal replication group size is 4.

Should group size be increased under attack?

Although the ideal group size is 4, perhaps larger group sizes with their larger
overhead are better when the group is under attack. In that case, perhaps
the increase in tolerance is more beneficial than the extra computation lost
to overhead.

In the Validation Report, Chapter 2, Section 6, we compare a policy of pure
replacement with a policy that changes the group size from 4 to 7 after an
attack is detected. Both policies maintain at least 4 replicas in the group at
all times by discarding any replica in a domain that has been detected to be
corrupt and replacing it with another in a good domain, but the new policy
adds three replicas at the first sign of trouble.

Mathematical analysis showed that the useful life is greater under the policy
of pure replacement unless the time to reconfigure the group, (i.e., to change
its membership) is very long, in which case the alternative policy offered a
slight advantage. Because we aimed to keep the cost of reconfiguration as
small as possible (for reasons in addition to survivability) we chose the pure
replacement policy.

When should a group be reconfigured?

At a minimum, the group must be reconfigured when one of its replicas is
running in a security domain that has just been quarantined for corrupt
or suspicious behavior. Then that replica is cut off from the rest of the
group. To maintain 4 replicas, it must be replaced by another. Similarly,
reconfiguration is forced if a replica simply crashes, even if not under attack.

But should the group be reconfigured in other circumstances too? We did not
completely answer this question during the ITUA project. It may be prudent
to move replicas away from domains that are suspect but not quarantined.
On the other hand, reconfiguring too often would waste resources and may
give the attacker ways to trick the defense into wasting them.

Our approach to answering the question for ITUA was to reconfigure only
when forced to, by crashes or quarantine, but also to quarantine according
to a policy that optimizes survivability. Such policies are addressed next.

Should demonstrably corrupt security domains be quarantined?

Yes. If the manager in domain D is certain that domain X is corrupt,
D should block X. Additionally, if the manager in D can prove to other
managers that X is corrupt, it should forward that proof and X should be
quarantined by all correct managers.

16

e Should suspicions be used to quarantine security domains?

In general, no, because of the risk of spoofing and denial of service. The
decision must also depend, though, on a judgement about the likelihood
that the suspicion is correct.

The Validation Report, Chapter 5, analyzes one common special case in
detail. If D is certain that X is corrupt but cannot prove it to other managers,
then D’s claim “X is corrupt” is only a suspicion for those other managers,
because D may itself be corrupt and lying. The suspicion, however, carries
a lot of information, because at least one of D or X s corrupt.

Chapter 5 shows that, if the number of domains is much larger than the
size of a replication group (usually 4), the defense should quarantine both D
and X to maximize the probability that the attack is contained and thereby
maximize the survival of the application. Our analysis of the best policy if
the number of domains is small was not completed during the ITUA project.

5.4 Rapid Local Response

The ITUA design includes rapid local response to events that may indicate an
attack is in progress. These responses are local to each host and are much faster
than the global adaptive responses described in the previous section because no
coordination among the managers is involved. A faster response means that the
chance of delaying or foiling an attack is greater.

A control loop implements each rapid local response. The control loop monitors
one or more sensors, each of which is typically a 3rd party Intrusion Detection
System (IDS). From the sensor data and possibly other state, a decision is made
and changes to the local host are made via one or more actuators. Sensors we have
used include:

the Snort network IDS [14];

the Tripwire file integrity checker [9];

e a homegrown detector for TCP connection floods, which counts the number
of existing connections on each port and raises an alarm if the number is too

high;

e a homegrown detector for ARP cache poisoning, which remembers the state
of the ARP cache and raises an alarm when it is changed.

Actuators we have used include:

17

e the Netfilter Linux firewall [11];
e homegrown scripts for checkpointing and restoring data;

e host shutdown.
As with global coordination, rapid local response raises various policy issues:

e How aggressive should local responses be?

The answer depends on a judgement about the reliability of the sensors and
of the meaning of the sensor data. IDSs are notoriously imprecise: actual
attacks are missed and false alarms are raised. The attacker may also be

able to spoof, or fool the detector into raising the wrong kind of alarm.

For example, an attacker may use a port scan as the first step in an attack,
to find which ports a host has open. A sensor that reports port scans could
easily report which host was the source of the scanning, so that that host
could be blocked. Unfortunately, a port scan detector is easily spoofed so
that it reports the wrong source. Blocking a host based on such port scan

spoofing would deny service to authorized uses.

In general, an aggressive response is good if it has a high probability of
stopping unauthorized behavior. An aggressive response is bad if it is easily

spoofed into stopping authorized behavior instead.

e Should local responses involve the manager on the local host?

Typically, yes. The manager serves two main functions in a rapid response
control loop. First, it can set policy that applies to every actuator. If aggres-
sive responses are dangerous because resources in the network are scarce and
denial of service is a big risk, the managers can agree to be less aggressive
and cause every local control loop to respond less aggressively. Second, some
control loops keep state and the manager can be a good place to maintain

that state.

5.5 Byzantine Group Communication

The ITUA architecture puts processes with redundant functions into a group.
Specifically, every replicated application component consists of a group of its repli-

cas, and the set of all ITUA managers forms a single, cooperative, group.

All ITUA process groups have communication needs in common. The group
members communicate via multicast, in which one member sends the same mes-
sage to every other. The multicast protocols must be able to ensure that every

18

correct group member receives the same messages in the same order, in spite of
Byzantine corruption of some members. The group must also be able to agree on
its membership, i.e., which processes should receive a multicast and which should
not, and it must be able to cope with changes in membership forced by corruption
and by decisions of the ITUA managers.

ITUA handles these needs with a Group Communication System (GCS) used
by every ITUA group. The GCS implements three main protocols for:

1. multicasting messages reliably;
2. putting multicast messages into a total order;

3. maintaining membership data.

The GCS also supports the transfer of state from one replica to another; this state
transfer is used in replica groups when starting a new replica but is not needed
by the manager group. Each GCS protocol tolerates intrusions and failures by
guaranteeing correct behavior if fewer than a third of the group members are
corrupt. More detail about the GCS design can be found in [13].

The following key questions arose during development of the GCS:

e Is the intrusion tolerance required of the GCS fundamentally differ-
ent from the Byzantine fault tolerance required of other systems?

The requirements placed on the ITUA GCS are more severe than the require-
ments placed on some, and perhaps most, Byzantine fault-tolerant systems.
We first discuss how the requirements are similar, then discuss how intrusion
tolerance goes beyond fault tolerance.

Intrusion tolerance is like Byzantine fault tolerance in that corruption of a
subset of group members must be tolerated. In both cases we aim to tolerate
Byzantine corruption, which is the weakest assumption that can be made
about the behavior of a process. In both cases we want reliable multicast
protocols that preserve the order in which messages are delivered.

Intrusion tolerance is more demanding than Byzantine fault tolerance be-
cause it must work even in a very dynamic environment. The ITUA GCS
must implement state transfer to new replicas because replicas will certainly
be killed or corrupted by an attacker, whereas this capability may not be nec-
essary for some fault-tolerant systems if failures are rare. The ITUA GCS
protocols must work even when the group membership changes frequently.
For example, when the ITUA protocols use voting, care must be taken to
maintain a record of votes cast even when the group membership changes.

19

Thus, the protocol can guarantee the progress of voting in spite of an attack
that forces the group membership to change repeatedly during the vote.

e What model of network communication should the GCS assume?

One way that fault-tolerant group communication protocols differ is in the
assumptions they make about the underlying network. A distinction is often
made between synchronous and asynchronous: in an asynchronous network,
every message will be delivered eventually (perhaps using retransmissions),
whereas a synchronous network delivers within a bounded time. The as-
sumption made about a synchronous network is clearly stronger than the
assumption made about an asynchronous one.

Stronger assumptions tend to be worse for intrusion-tolerant systems be-
cause they allow more opportunity for attack. So protocols that assume a
synchronous network might be made to fail if the attacker is able to delay
messages. Protocols that assume only an asynchronous network are better
because they will not fail under such attacks.

On the other hand, asynchronous networks force two limitations on GCS:

1. A deterministic protocol for agreement is impossible [7]. Agreement
protocols are necessary for the manager coordination of Section 5.1 and
they underlie the reliable, ordered multicast GCS protocols. If the net-
work is asynchronous, the GCS cannot be deterministic.

2. Progress of the GCS protocol and of the services that depend on it
cannot be guaranteed in any finite time. As a practical matter, this
limitation is never acceptable in real systems because services that take
too long are assumed to be broken, whether they really are or not.

To avoid these limitations, we assumed a timed asynchronous network [5].
This assumption is intermediate between synchronous and asynchronous:
most messages are delivered within a bounded time, 7', but exceptions are
possible, and the frequency of exceptions is also bounded. This assumption
approximates real networks of workstations in ordinary use fairly well 2.

Choosing the parameter T turned out not to be an easy task in ITUA. Too
large, and the system waits too long to time out in response to real failures.
Too small, and the system raises false alarms about components that are
slow rather than dead.

2We realize, though, that it may not approximate a network under attack.

20

5.6 Unpredictability

We claim that defensive adaptation is more effective if it is unpredictable. To
test this claim, the ITUA project explored ways in which unpredictability can
be added to other defense mechanisms. Most of our work centered on creating a
general method for adding unpredictable alternatives rather than on implementing
the specific alternatives themselves.

Unpredictability can be added to almost any adaptive response by making
a random selection among the available alternatives. If needed, fake or decoy
alternatives can usually be created. The key questions we addressed about this
approach are the following:

e Is a general mechanism for creating randomness in application-level
adaptation possible?

Yes. Many of the application-level adaptation decisions that ITUA imple-
ments are made in middleware. We used the QuO adaptive middleware [10]
as a framework for describing these decisions and how they should be made.
When a choice among alternatives is possible, an alternative can be chosen
randomly. We modified the QuO framework to support such random choices.

e What adaptation decisions offer alternatives that can be made ran-
domly?

We identified these options:

— If a new replica is needed in some group, in which security domain and
on which host should it be created?

— If a security domain contains hosts or processes that are behaving in a
suspicious manner but are not yet provably corrupt, should the domain
be quarantined?

— If an attack is detected using a (TCP or UDP) port P and the attacking
host cannot be reliably identified, blocked or quarantined, should P be
closed and for how long? (See the Validation Report, Chapter 4 for an
analysis of some of these options.)

— If the defense cannot maintain full replication of a component and must
enter a degraded mode of operation, should it create decoys that look
like component replicas?

— Should normal communication include fake messages interleaved with
real ones to confuse traffic analysis?

21

e Does random choice between alternatives guarantee unpredictabil-
ity?
The answer depends on where the observer is. To an outside observer, e.g.,
an attacker who has no privilege in the system, a random choice between
alternatives will appear unpredictable. This is true even when the number of
alternatives is small. However, if the observer is inside the entity that makes
the random choice then the observer will be able to predict the behavior of the
system following the choice. So the general answer is that unpredictability
cannot be guaranteed, but a random choice will be unpredictable to some
observers.

Consider the worst case for the defense. A decision, such as where to create
a new replica, will be made by a set of managers, including at least one
manager from every domain that is not quarantined. If the attacker has
silently corrupted one of the managers in that set, he will learn the result
of the decision before that decision is put into effect. Therefore, a random
decision will be predictable in this case.

Two factors affect the likelihood an attacker will find random behavior pre-
dictable. First, the more distributed the decision-making, the more likely it
is that the attacker has already corrupted some component that will tell him
the result of the decision. Second, the more components the attacker has
corrupted within the system, the more likely it becomes that he can collect
the information he needs to find out which random choice was made.

Therefore, a random choice is more likely to be unpredictable if it is made
by as few components as possible and if the defense aggressively quarantines
domains thought to be corrupt, cutting them out of the system.

5.7 Technology Transition

To test how easily ITUA could be applied to a system of military interest, we
began with IEIST [4] (Insertion of Embedded Infosphere Support Technologies),
a C2 system with both ground nodes and aircraft. IEIST was concurrently un-
der development at Boeing and shared several developers with the ITUA project.
Taking several IEIST components, we created an application that executes a basic
IEIST scenario over a network of hosts (without the need for actual aircraft), and
defense-enabled it.

IEIST focuses on the development of software called Guardian Agents (GAs)
and Fuselets. A GA augments an embedded tactical system, interoperates with
legacy systems and communication links, and plugs into the Joint Battlespace In-

22

fosphere (JBI) [18]. A Fuselet is an entity in a JBI whose job is to derive new
knowledge by fusing multiple observations. A typical IEIST use-case has inter-
actions among a fighter-aircraft GA, an Unmanned Combat Air Vehicle (UCAV)
GA, and a Discovery and Navigation Fuselet. To make UCAV data available to
the fighter, both the UCAV and fighter GAs register with the Fuselet and the
fighter GA announces its route plan. The Fuselet connects the fighter GA with
UCAV GAC(s) that are monitoring the fighter’s route and have relevant informa-
tion. The Fuselet serves multiple fighters and multiple UCAVs simultaneously and
is therefore a critical component of this application.

Our defense enabling centered on surviving attacks against the Fuselet. We
replicated the Fuselet in 4 security domains to tolerate Byzantine corruption of
one domain. Three additional domains were used, two to run stand-alone non-
replicated versions of the Fuselet and a third to run the GAs. The defense strategy
was to maintain 4 Fuselet replicas, abandoning domains for which severe intrusion-
detection alerts had been raised, and switching to using the stand-alone Fuselets
if fewer than 4 domains remain available.

Applying ITUA to IEIST addressed the following issues:

e Were the ITUA defenses effective for this application?

The ITUA defenses worked as designed. An attacker who infiltrates one
domain and is detected will cause that domain to be abandoned and its
Fuselet replica started in another domain. The ITUA defense switched to
using stand-alone Fuselets under the expected conditions.

However, the ITUA project did not measure the difficulty for an attacker
to carry out the above attack, nor did it measure, e.g., in Red Team ex-
periments, the difficulty for an attacker to circumvent the ITUA defenses.
Within the ITUA team, the defenses received a great deal of scrutiny, in-
cluding some of the analysis and planning that would go into a Red Team
experiment. We believe, without proof, that the ITUA defenses would add
significantly to the difficulty of an attack, even by a sophisticated attacker.

e Were changes to IEIST needed to use ITUA?

No changes to IEIST functionality were needed. To replicate the Fuselet,
however, some Fuselet-specific code had to be written and one problem with
nondeterminism needed a workaround. We consider this nondeterminism
problem to be a significant lesson learned from ITUA.

The Fuselet-specific code was needed for transferring the state of one replica
to another. The code allows a snapshot to be taken of the state of one replica,
and allows that snapshot to initialize the state of a new replica when it is

23

started. Such application-specific code is required in any system that can
dynamically change the membership of a replication group that maintains
an internal state.

Using ITUA also requires that replicas behave deterministically®. If each
replica receives the same inputs in the same order, then determinism implies
that the replicas will maintain the same state, i.e., they will continue to be
replicas. The IEIST Fuselet is deterministic, and therefore can be replicated
using ITUA.

However, the middleware that ITUA uses for communication (the TAO [16]
implementation of CORBA) does not marshal data deterministically. There-
fore, application data sent by two replicas may be transmitted over the
network in two different forms. Unfortunately, ITUA compares such data
at a low network layer where this difference matters. Our workaround for
this problem was to avoid all cases of nondeterminism in CORBA and this
workaround required changes to IEIST. A better solution would have been
to compare data from different replicas at a higher layer at which this non-
determinism never appears.

e Would the ITUA defense mechanisms be practical in this applica-
tion domain?

The ITUA approach to defense enabling appears to be practical and desirable
for this domain. However, this domain includes real-time applications. We
suspect that the existing ITUA implementation would not provide the real-
time predictability that is needed for such applications.

5.8 Implementation

We implemented a prototype of ITUA, including global coordination via managers
(Section 5.3), local control loops for rapid response (Section 5.4), and a supporting
Byzantine fault-tolerant group communication system (Section 5.5). Following are
some key implementation issues that surfaced:

e How should concurrency within a manager be controlled?

Every ITUA manager must respond to a variety of inputs, including notifi-
cations from sensors on the local host and multicasts from other managers.
These inputs represent concurrent activity of the system. Most of these in-
puts can cause changes to the internal state of the manager and therefore

3For active replication. It is to be noted that other replication schemes are also possible under
ITUA where this deterministic behavior requirement on the replicas can be relaxed.

24

the order in which the manager processes the inputs may affect whether the
manager’s state, and thus its behavior, is correct.

Initially, we gave each input its own thread, allowing the manager to process
inputs concurrently. As more functionality was added, though, synchronizing
access by these threads to the manager’s data became increasingly difficult.
Eventually we abandoned this approach as too complicated.

Some of the inputs are remote procedure calls that expect a reply. We sim-
plified the manager design by serializing these calls, forcing each to run to
completion before handling the next. Other inputs are still handled concur-
rently with these calls.

One problem with this new approach was that waiting for completion of some
calls may take a long time, and other calls, that wait on receipt of inputs from
managers that may have failed, may take forever. We solved this problem by
implementing a timer queue that allows controlled interruption of the remote
procedure call currently in progress.

How should consensus decisions by the managers be arranged?

Each decision is triggered by one or more managers multicasting a request
to begin the decision-making process. If the managers agree that a decision
is needed, then they make the decision.

Our original design had the managers, after agreeing to make a decision,
multicast their current version of the data on which the decision would de-
pend. Once every correct manager has every other manager’s current data, a
consensus decision can be made by applying a deterministic function to the
data. The drawback of this design was that it took two separate agreement
steps to reach a decision, and that was slow.

We changed the manager design so that data on which decisions would de-
pend are multicast whenever the data change. This, in effect, replicates that
data at each manager because every manager always knows the state of every
other manager’s data. The effect of this change was to keep the managers
perpetually ready to make a decision, reducing a two-step process to the one
step of agreeing on when a decision needs to be made.

The only drawback of this design change is that multicasting several versions
of the same data between decisions is wasteful. For ITUA, paying this price
was a small cost for the gain of quicker decision-making in the manager

group.

25

5.9 Validation

Section 5.2 discussed the ITUA model of the attacker. In the Validation Report,
that model was combined with a model of the ITUA defense and its environment
in order to estimate the survivability provided by ITUA. This section discusses
some issues that arose in making that survivability estimate.

e Is a stochastic model necessary?

Yes. Probabilities enter the analysis in several ways. Some mechanisms that
depend on factors too detailed to appear in the model may be modeled as
stochastic processes. The most important example is intrusion detection. At
the level of abstraction in our models, we cannot know whether a particular
attack will be detected, and we do not even know whether the detector is
deterministic, i.e., that if an attack is detected once that it will be detected
every time. Because of this uncertainty, we modeled intrusion detection as a
stochastic process parameterized by several probabilities and rates.

Probabilities will also enter the analysis if the attack or the defense uses an
unpredictable strategy. Such strategies arise, for example, in the model of
quarantine in Chapter 5 of the Validation Report.

e Is game-theoretic analysis necessary?

In general, yes. The interaction between attack and defense is a game. The
defense plays the game to maximize some measure of survival against the
best attack. Likewise, the attacker plays to minimize survival against the
best defense.

We made no use of game-theoretic methods in Chapters 2, 3, and 4 of the
Validation Report because the best strategy for the attacker was clear: attack
as aggressively as possible. Therefore the analysis of these models could be
simplified.

e How were model parameters estimated?

Our plan was to study actual systems and actual intrusions to estimate these
parameters. That plan was only partly completed during the ITUA project.

We built a tool, Ferret, for finding vulnerabilities in systems. From the
frequency at which vulnerabilities are found in real systems, we estimated
how likely an attacker would be to exploit the vulnerabilities during an actual
attack, and from this, we estimated parameters of the model that measure
how quickly security domains will be overrun in an aggressive attack. The
Validation Report, Chapter 6, describes Ferret and describes our approach
to parameter estimation, working out an example in detail.

26

6 ITUA Deliverables and Outreach

6.1 Technology Demonstrations

We demonstrated ITUA technology on the following occasions.

Demonstrating Intrusion Tolerance with ITUA, DISCEX III, Washington, DC,
April 2003.

SAMS demonstration including ITUA technology at CECOM, Ft. Monmouth,
April 2003.

ITUA Demonstration at the OASIS Winter 2002 PI meeting, Hilton Head Island,
SC, March 2002.

ITUA Demonstration at DARPA Tech 2002, Anaheim, CA, July 2002.

ITUA Demonstration at the OASIS Summer 2001 PI meeting, Santa Fe, NM, July
2001.

6.2 Project Software

The events above demonstrated software prototypes resulted from the ITUA project.
These include new software developed or enhancement and integration of existing
software by the ITUA team as described below.

Development of the ITUA Technology suite consisting of rapid reaction loops, in-
trusion tolerant gateway and GCS and enhanced version of QuO contracts.

Development of Ferret, which is a host vulnerability checking tool.

Defense enabled IEIST application, which demonstrates the integrated capability
of the ITUA technology suite in the context of the Discovery and Navigation
Fuselet and the Guardians in Boeing’s IEIST application.

QuO and Gateway Components for SAMS, that were integrated with other OASIS
technologies to defend the security monitoring service.

27

6.3 Published Papers

We wrote the following papers about ITUA and ITUA-related topics. The first
three were included in the OASIS book (OASIS- Foundations of Intrusion Tolerant
Systems, edited by Jay Lala, published by DARPA and IEEE Computer Society
Press.

Survival by Defense-Enabling. P. Pal, F. Webber, R.E. Schantz, J. Loyall, R.
Watro, W. Sanders, M. Cukier, and J. Gossett. Proceedings of the New Security
Paradigms Workshop 2001, Cloudcroft, New Mexico, September 11-13, 2001, pp.
71-78.

Quantifying the Cost of Providing Intrusion Tolerance in Group Communication
Systems. H. V. Ramasamy, P. Pandey, J. Lyons, M. Cukier, and W. H. Sanders.
Proceedings of the 2002 International Conference on Dependable Systems and
Networks (DSN-2002), Washington, DC, June 23-26, 2002.

Formal Specification and Verification of a Group Membership Protocol for an
Intrusion-Tolerant Group Communication System. H. V. Ramasamy, M. Cukier,
and W. H. Sanders. Proceedings of the 2002 Pacific Rim International Symposium
on Dependable Computing (PRDC 2002), Tsukuba, Japan, December 16-18, 2002.

An Architecture for Intrusion Tolerance Using Adaptation and Redundancy. Partha
Pal, Paul Rubel, Michael Atighetchi, Franklin Webber, William H. Sanders, Mouna
Seri, HariGovind Ramasamy, James Lyons, Tod Courtney, Adnan Agbaria, Michel
Cukier, Jeanna Gossett, Idit Keidar. Submitted for publication.

Semi-Passive Replication in the Presence of Byzantine Faults. HariGovind V.
Ramasamy, Adnan Agbaria and William H. Sanders. Submitted for publication.

A Byzantine Agreement Protocol with Fault-Proportionate QOverhead. H. V. Ra-
masamy, A. Agbaria, and W. H. Sanders. Submitted for publication.

Ferret: A Host Vulnerability Checking Tool. A. Sharma, J. R. Martin, N. Anand,
M. Cukier, and W. H. Sanders. Proceedings of the IEEE Pacific Rim Interna-
tional Symposium on Dependable Computing (PRDC-10), Tahiti, French Polyne-
sia, March 3-5, 2004.

Formal Verification of an Intrusion-Tolerant Group Membership Protocol. H. V.
Ramasamy, M. Cukier, and W. H. Sanders. IEICE Transactions on Information
and Systems special issue on Dependable Computing, vol. E86-D, no. 12, Decem-
ber 2003.

28

Dependability and Performance Evaluation of Intrusion-Tolerant Server Architec-
tures. V. Gupta, V. Lam, H.V. Ramasamy, W.H. Sanders, and S. Singh. Proceed-
ings of LADC 2003: The 1st Latin American Symposium on Dependable Comput-
ing, Sao Paulo, Brazil, October 21-24, 2003.

Probabilistic Validation of an Intrusion-Tolerant Replication System. S. Singh, M.
Cukier, and W. H. Sanders. Proceedings of the 2003 International Conference on
Dependable Systems and Networks (DSN-2003), San Francisco, CA, June 22-25,
2003, pp. 615-624.

Providing Intrusion Tolerance With ITUA. T. Courtney, J. Lyons, H. V. Ra-
masamy, W. H. Sanders, M. Seri, M. Atighetchi, P. Rubel, C. Jones, F. Webber,
P. Pal. R. Watro, Michel Cukier and J. Gossett. Supplemental Volume of the 2002
International Conference on Dependable Systems and Networks, June 23-26, 2002.

Probabilistic Validation of Intrusion Tolerance. W. H. Sanders, M. Cukier, F. Web-
ber, P. Pal, and R. Watro. Digest of Fast Abstracts: The International Conference
on Dependable Systems and Networks, Bethesda, Maryland, June 2002.

A Configurable CORBA Gateway for Providing Adaptable System Properties. M.
Seri, T. Courtney, M. Cukier, V. Gupta, S. Krishnamurthy, J. Lyons, H. Ra-
masamy, J. Ren, and W. H. Sanders. Proceedings of the Workshop on Dependable
Middleware-Based Systems (WDMS 2002), Washington, DC, June 26, 2002.

Intrusion Tolerance Approaches in ITUA. M. Cukier, J. Lyons, P. Pandey, H. V.
Ramasamy, W. H. Sanders, P. Pal, F. Webber, R. Schantz, J. Loyall, R. Watro, M.
Atighetchi, and J. Gossett. FastAbstract in Supplement of the 2001 International
Conference on Dependable Systems and Networks, Goteborg, Sweden, July 1-4,
2001, pp. B-64 to B-65.

Assessing Adaptation in the Context of Security and Survivability. P. Rubel and P.
Pal. Presented as a position paper in the First Workshop on Information-Security-
System Rating and Ranking (ISSRR), Williamsburg, VA, May 2001.

Impediments to Building Survivable Systems: An Experience Report. P. Rubel, P.
Pal, F. Webber, M. Atighetchi, and C. Jones. IEEE ISW 2001/2002.

Intrusion Tolerant Systems. P. Pal, F. Webber, R. Schantz, and J. Loyall. Proceed-
ings of the IEEE Information Survivability Workshop (ISW-2000), 24-26 October
2000, Boston, Massachusetts.

29

6.4 Theses

Students under the direction of Bill Sanders at the University of Illinois produced
the following theses related to ITUA.

Intrusion-Tolerant State Transfer for Group Communication Systems. V. Gupta.
Master’s Thesis, University of Illinois, 2003.

Probabilistic Validation of an Intrusion-Tolerant Replication System. S. Singh.
Master’s Thesis, University of Illinois, 2003.

A Replication Protocol for an Intrusion-Tolerant System Design. J.P. Lyons. Mas-
ter’s Thesis, University of Illinois, 2003.

An Adaptive Quality of Service Aware Middleware for Replicated Services. S. Kr-
ishnamurthy. Ph.D. Thesis, University of Illinois, 2002.

A Group Membership Protocol for an Intrusion-Tolerant Group Communication
System. H. V. Ramasamy. Master’s Thesis, University of Illinois, 2002.

Reliable Delivery and Ordering Mechanisms for an Intrusion-Tolerant Group Com-
munication System. P. Pandey. Master’s Thesis, University of Illinois, 2001.

6.5 Other ITUA Presentations

Several other occasions called for ITUA-related talks.

Bill Sanders represented our project in the joint EU-US workshop on Intrusion
and Attack Tolerance (January 29-30, 2001, Lisbon).

Partha Pal presented our work-in-progress at the IEEE ISW-2000 workshop (Oc-
tober 24-26, 2000, Boston).

Franklin Webber was on a panel on “Integrating Foult Tolerance and Security
in Distributed Information Systems” at the 19th IEEE Symposium on Reliable
Distributed Systems (October 16-18, 2000, Nuremberg, Germany).

6.6 Project Documents

The following documents were produced as project deliverables.

30

Performance and Red Team Evaluation Report

Validating Intrusion Tolerance Using Mathematical Models
Validation and Characterization Report

Final Software Release Users’ Guide

ITUA Gateway Reference Manual

OASIS Peer-Review Document

Finally, the following technical reports also document results of research per-
formed under this project.

Overcoming Byzantine Failures using Checkpointing. Adnan Agbaria and Roy
Friedman. University of Illinois at Urbana-Champaign Coordinated Science Lab-
oratory technical report no. UILU-ENG-03-2228 (CRHC-03-14), December 2003.

Stochastic Modeling of Intrusion-Tolerant Server Architectures for Dependabil-
ity and Performance Evaluation. V. Gupta, V. Lam, H. V. Ramasamy, W. H.
Sanders, and S. Singh. University of Illinois at Urbana-Champaign Coordinated
Science Laboratory technical report no. UILU-ENG-03-2227 (CRHC-03-13),
December 2003.

7 Plans for Further Research

The results obtained in ITUA reinforce the need for continued further exploration
of a number of topics, that can be roughly identified as falling within the three
broad areas:

¢ Integration of available Intrusion Tolerance solutions: ITUA and other
OASIS projects provided solutions to specific problems. These individual
technologies need to be put together in an integrated solution to understand
their collective capabilities.

e Further exploration of open issues and issues uncovered during the
present phase of research: Exploration to date both within the outside
ITUA, clearly shows that several key issues in intrusion tolerance are still
open (some of these are discussed later in this section). Without satisfactorily
addressing these issues, integration of multiple technologies will remain weak,
and vulnerable.

31

e Software Engineering of survivable systems: Even though the indi-
vidual technologies have started to emerge and mature, the technology inte-
gration and software engineering of intrusion tolerant systems are still very
human-centered activity. This impedes mainstream adoption of intrusion
tolerance technology in producing repeatable solutions in an economic way.

Continued work in all these areas is needed to develop a solid, transitionable
foundation of intrusion tolerance techniques on which future survivable systems
can be built. In this section, we briefly describe a selected sample of research
problems and issues within each of these areas.

7.1 Integrated Survivability Solutions

The need for technology integration was visible very early within the OASIS
program. The effort to characterize the technologies being produced by vari-
ous projects in the OASIS program clearly showed that none of the individual
projects could achieve comprehensive survivability for a typical DoD applications.
Even though many projects, including ITUA, explored an architectural approach,
they fell short of a generic framework that could be customized for specific cost-
survivability trade-offs of individual projects. Most of the technologies being ex-
plored in OASIS and prior DARPA programs investigating 3rd generation security
addressed specific problems, and had specific target applications.

We have been espousing an application oriented approach to survivability
(APOD), that started with understanding the survivability requirements of an
application, followed by devising a survivability strategy that best serves those re-
quirements, and subsequent realization of that strategy in the system. We carried
forward this approach to utilize the ITUA technologies in defending applications
like IEIST, where corruption inducing attacks are more attractive to the adver-
sary than any other kind of attacks. Nevertheless, the big picture of a survivability
architecture, where multiple diverse technologies are integrated to provide a com-
prehensive solution was still lacking.

The SAMS project within OASIS was a small-scale experiment in that direc-
tion. While it established that multiple OASIS technologies could be integrated to
achieve something useful, it produced a very customized, one of a kind solution.
The real exploration of a comprehensive security architecture has began, and is
continuing in the OASIS Dem/Val program. We believe that results from OASIS
Dem/Val will provide a proven direction for building survivable systems in the
near future, and will help establishing new agendas for survivability research in
the long run. Coordinated use of protection, detection and reaction capabilities;

32

design principles for survival; quantifiable system agility (how quickly can the sys-
tem adapt?) and resiliency (can the system provide some service even if major
parts of the system are unusable?) are important research goals in this context.
Some of these are being addressed in OASIS Dem/Val.

7.2 Continued Exploration of Survivability Technologies

In this section we outline some of the open research problems in Intrusion Toler-
ance.

e Dependence on Timing and Environmental Assumptions: Timing
and environmental assumptions refer to things that an intrusion tolerance
technology expects to be true. Strong assumptions create an unhealthy de-
pendence that can be exploited by the attacker, and hence is a weakness (of
the intrusion tolerance technology). This weakness may be ingrained at the
basic concept of the technology or may stem from its implementation. In
most cases, technology developers do not pay enough attention to this issue
and its consequences, which is detrimental for the development and evolution
of sound intrusion tolerance solutions. In the narrow context of ITUA, we
made a conscious effort to use weaker assumptions (for instance our use of
Timed Asynchrony as opposed to stronger synchronous assumptions). How-
ever, we observed that various key decisions are still time-dependent, i.e.,
depend on an event being timed out. As a consequence, the system is sus-
ceptible to attacker exploits of these time outs: by manipulating the system
they can, in effect, steer the system to their desired mode of behavior or
state. Further work is needed to address this issue. Better designed algo-
rithms with less dependency on time outs as triggers, multiple layering of
time out based behavior, and their containment and localization are exam-
ples of future research directions.

e Graceful Degradation and Flexibility: Algorithms and mechanisms that
make static assumptions about their failure mode are inappropriate for sur-
vivable systems. On the extreme conservative side, systems can be built
expecting the worst kind (L.e., Byzantine) of failures in the system. This
is the approach taken in ITUA. However, Byzantine tolerant algorithms re-
quire that a certain level of replication be maintained (tolerance of f failures
require 3f+1 replicas at least) and are also expensive in terms of communi-
cation costs. It may not always be practical to run the system with the goal
of tolerating multiple Byzantine failures. Furthermore, if the f Byzantine
failure tolerant system/protocol halts the system when the number of failure

33

assumption is violated (i.e., more than f failures have occurred in a system
of 3f+1 replicas), then the entire system fails to survive despite a significant
level of resource remaining available in the system. It is often the case that
the survivable system should continue to operate, even if it may not guar-
antee tolerance of further Byzantine failures. This calls for a flexible scheme
where the defense can gracefully degrade i.e., going from tolerating say 1
byzantine failure to tolerating 1 crash failure when there are only 2 replicas
available, and also upgrade i.e., going from 2 replicas with the ability to
tolerate 1 crash failure to 4 replicas tolerating 1 Byzantine failure. We are
exploring some of these ideas in our publish-subscribe protocols in DPASA.

Malicious Acts Within Privileges (Insider Attacks): The ITUA ar-
chitecture focuses on outsider attackers. The architecture does not include
any defense against an insider user acting maliciously without violating his
privileges. Consequently, such (insider) activities are considered outside the
scope of our experiments. In order to extend the scope of our defense, we
are proposing (elsewhere) to develop a technology that will introduce a high
level of deterrence for the insiders to act maliciously. This deterrence will
be built into the system by augmenting well-known insider mitigation tech-
niques (such as double entry book keeping, split-authorization and auditing)
with an on-line reasoning engine, which determines when to apply mitigat-
ing responses. To ensure the usability of the enhanced system (reducing the
overhead of redundancy, computational checks and human intervention that
are part of the mitigating responses), and to leverage uncertainty in the mind
of the attacker, we will apply these responses in a probabilistic manner.

Furthering the Science of Validating and Quantifying Intrusion Tol-
erance: We have developed an integrated methodology that combines dif-
ferent validation approaches such as testing, attack injection, and modeling.
We applied this to evaluate significant parts of ITUA technology, and in the
process identified a number of ways this methodology can be enhanced. One
such extension consists of building an attack injection campaign representing
realistic attack distribution. A second issue involves understanding and de-
veloping attacker profiles. In evaluating ITUA, some of the developed models
needed an attack sub-model. Development of an approach to characterize the
attacker will lead to more accurate and detailed attack sub-models, which
in turn will improve the validation of intrusion tolerance. Furthermore, the
attacker profiles will also help us estimate the various parameters in the
sub-model better. This will make the model based evaluation more realis-
tic.Another extension focuses on discovering all the vulnerabilities present in
an intrusion tolerant system. Today, different tools exist to discover different

34

7.3

kinds of vulnerabilities. In order to improve the validation of intrusion toler-
ance, these tools should be integrated and a more complete list of potential
vulnerabilities should be looked for.

Better Software Engineering of Survivable Systems

Component Based Framework for Intrusion Tolerance(CoBFIT):
The ITUA experience has shown that it is often the case that key capabil-
ity (e.g., event handling, distribution and replication over computing nodes,
public-key cryptography, or intrusion detection) is needed in implementing
multiple intrusion tolerance functionalities, protocols and algorithms. Yet it
seems to be that each capability is custom built or integrated for different
contexts. It is clear that by developing a reusable base of these key support-
ing capabilities, significant cost savings can be achieved in constructing and
testing intrusion tolerance technologies. Toward that end, we have started
working on a flexible software framework called CoBFIT, which stands for
Component-Based Framework for Intrusion Tolerance. CoBFIT is intended
to provide a robust, flexible, reconfigurable, and portable software framework
for building intrusion-tolerant middleware services. The framework is meant
to be extendable and adaptable to specific survivability and dependability
needs, which cannot all be known in advance. A key challenge to achieving
this goal is that we need to find a way to separate the common support for in-
trusion tolerance from intrusion-tolerant services, so that we have a reusable
framework that could serve as a platform for building various intrusion- tol-
erant services without having to re-implement the required support for each
of those services. To be successful, we will need to research ways to identify
and separate key intrusion tolerance features from the the implementation
of the intrusion tolerant service’s functionality, as well as ways to organize
the framework itself. Examples of such commonly needed features for sup-
porting intrusion tolerance include secure buffer management, cryptography,
coordination of inputs from multiple intrusion detection mechanisms, repli-
cation over multiple nodes for increasing dependability through redundancy,
primitives for secure communication, and Byzantine consensus.

Languages and Tools Support: Now that we have seen a positive indi-
cation that the concept of defense-enabling is viable, we need to work on
making this process more streamlined and repeatable. Having better means
of specifying the defense-strategy and tactic, code-generators or other com-
piling tools to produce code that can be used in defense-enabling, libraries
of packaged, reusable adaptive behavior and other aspects of defense are

35

important future directions. In another context we are exploring componen-
tization of adaptive behavior. If successful, this will lead us to componentized
defensive adaptation, and a step towards the library of reusable defensive be-
havior. We are exploring model driven architectures of distributed systems
in another research project, which can be leveraged in specifying important
elements of a survivability architecture as well.

8 Conclusion

ITUA was a very successful project in multiple ways. It achieved its primary goal
of developing a technology and architecture for tolerating corruption-inducing at-
tacks. This research broadened our understanding of cyber-defense and produced
technology and mechanisms that are at the foundation of intrusion tolerant sys-
tems. The technological advancement, and the feasibility of transferring the new
concepts and technology to military systems were demonstrated on multiple oc-
casions including invited demonstrations at DARPATech 2002 and DISCEX 2003.
Apart from our demonstration involving Boeing’s TEIST application components,
we transfered pieces of ITUA technology to other projects such as SAMS and
OASIS Dem/Val. Our work in ITUA had direct impact on follow up research pro-
grams such as SRS and OASIS Dem/Val. We seeded new research ideas such as
a flexible component based framework for intrusion tolerant communication layer
and the use of uncertainty in defense. These concepts are now being explored
in our continued research as well as by other researchers. We did seminal work
in the area of validating intrusion tolerance. We developed a methodology for
probabilistic quantification of intrusion tolerance that make use of logical anal-
ysis as well as modeling. We applied this technique to evaluate pieces of ITUA
technology and parts of the DPASA survivability architecture (developed under
the OASIS Dem/Val program). The results of our research in the ITUA project
is documented in numerous publications. It generated 4 MS thesis and multiple
PhD research topics (all under the supervision of Professor William Sanders at the
University of Illinois).

As demonstrated by our achievements, we made an impressive stride with
ITUA, but we are still at the early stages of a long way toward practical, us-
able, validated and quantifiable survivability. ITUA provided a partial solution,
addressing only part of a problem. In DPASA (under OASIS Dem/Val) we are
exploring an integrated architecture that combines state of the art COTS and
DARPA developed technologies providing protection, detection and adaptive re-
sponse capabilities. If successful, DPASA will demonstrate a new high watermark
in survivability, that can be validated by experimental and analytic methods, and

36

configured on the basis of cost-benefit trade-offs.

While we began exploring a more complete integrated survivability solution in
DPASA, there are other technical problems to follow through. As documented
in our test and evaluation report, we observed several anomalies in stress testing,
uncovered a few drawbacks in our adversarial testing, and identified several trade-
off and tuning issues. All these needs further exploration. Addressing these issues
will improve the ITUA technology.

Finally, there are fundamental problems that we did not investigate so far.
Handling attackers with privilege trying to damage the system by mounting legit-
imate actions (insider attacks), understanding and exploiting dynamic and behav-
ior based trust in defense, survivability of highly dynamic and/or mobile systems,
understanding interference between different survivability mechanisms, better soft-
ware engineering for defense-enabling are some examples. We plan to investigate
these areas in our continuing and future research projects. For instance, in MO-
BIES, we are exploring model driven architecture, which in conjunction with a
library of adaptive defense, automated testing and intrusion injection support,
can lead to a more robust engineering of survivable systems. The continued work
at the University of Illinois on COBFIT aims to develop a better engineered object-
oriented communication framework for intrusion tolerance that can be customized
for various application contexts. As another example, one of the objectives of the
DARPA SRS program is to develop technologies for thwarting insider attacks. An-
other upcoming DARPA program seeks to develop technologies for using dynamic
alteration of trust relationship for defending applications running on mobile ad-hoc
networks.

References

[1] M. Barborak, M. Malek, and A. Dahbura. The consensus problem in fault-
tolerant computing. ACM Comp. Surv., 25(2), 1993.

[2] Bob Blakely. The emperor’s old armor. In New Security Paradigms Workshop,
pages 2-16, September 1996.

[3] CERT advisories. http://www.cert.org/advisories/.

[4] D. Corman, T. Herm, and C. Satterthwaite. Transforming legacy systems to
obtain information superiority. In 6th ICCRTS, CCRP, June 2001.

37

[6] F. Cristian and C. Fetzer. The timed asynchronous distributed system model.
IEEE Transactions on Parallel and Distributed Systems, 10(6):642-657, June
1999.

[6] Michel Cukier et al. AQuA: An adaptive architecture that provides depend-
able distributed objects. In IEEE Symp. Reliable Distributed Syst., pages
245-253, October 1998.

[7] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed
consensus with one faulty process. Journal of the ACM, 32(2):372-382, April
1985.

[8] S. Kent. On the trail of intrusions into information systems. IEEE Spectrum,
December 2000.

[9] Gene Kim and Eugene Spafford. The design and implementation of Trip-
wire: A filesystem integrity checker. In Proc. 2nd ACM Conf. Computer and
Communications Security, pages 18-29, 1994.

[10] Joe P Loyall, Richard E Schantz, John A Zinky, and David Bakken. Specifying
and measuring quality of service in distributed object systems. In Proc. IEEE
Int’l Symp. Object-Oriented Real-Time Distributed Comp., pages 43-52, April
1998. Kyoto, Japan.

[11] Netfilter: firewalling, NAT and packet mangling for Linux 2.4.
http://www.netfilter.org.

[12] Partha Pal, Michael Atighetchi, Franklin Webber, Rick Schantz, and Chris
Jones. Reflections on evaluating survivability: The APOD experiments. In
IEEFE Int’l Symp. Network Comp. and Applications, April 2003.

[13] Partha Pal et al. An architecture for intrusion tolerance using adaptation
and redundancy. In Int’l Conf. Dependable Syst. and Networks, June 2004.
submitted.

[14] M. Roesch. Snort - lightweight intrusion detection for networks. In USENIX
LISA: Thirteenth Systems Administration Conference, pages 229-238, 1999.

[15] R. Schantz and D. Schmidt. Research advances in middleware for distributed
systems. In World Computer Congress, August 2002.

[16] Douglas C. Schmidt, David L. Levine, and Sumedh Mungee. The design of
the TAO real-time object request broker. Elsevier Science Computer Com-
munications, 21(4), April 1998.

38

[17] Fred B. Schneider. Implementing fault-tolerant services using the state ma-
chine approach: A tutorial. ACM Comp. Surv., 22(4), December 1990.

[18] United States Air Force Scientific Advisory Board. Report on Building the
Joint Battlespace Infosphere, 1999. Volume 1: Summary; SAB-TR-99-02.

[19] US Department of Defense. Trusted Computer System FEvaluation Criteria
(Orange Book), December 1985. DoD 5200.28-STD.

[20] John Wensley et al. SIFT: Design and analysis of a fault-tolerant computer
for aircraft control. Proc. IEEE, 66(10), October 1978.

39

